A versatile approach to selective and inexpensive copper patterns using polyelectrolyte multilayer coatings

نویسندگان

  • Troy R. Hendricks
  • Ilsoon Lee
چکیده

Versatile, highly selective, and inexpensive metal patterning techniques on various substrates are demanded for current research in microelectronic device fabrications. We present a new process for creating highly selective and cost-effective copper patterns that can be plated on virtually any substrate including plastics by combining polyelectrolyte multilayer (PEM) coatings, microcontact printing, and electroless deposition. Optical microscope, atomic force microscopy and energy dispersive X-ray spectroscopy were used to show the resulting copper structures exclusively plated where the patterned catalyst was electrostatically bound to the PEM coated surfaces. The copper plating rate was measured using a quartz crystal microbalance. The unpatterned polyelectrolyte surfaces are still active and can be used with additional processing to create complicated three dimensional metal architectures or even bimetallic patterns. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings.

Ice propagation is of great importance to the accumulation of ice/frost on solid surfaces. However, no investigation has been reported on the tuning of ice propagation through a simple coating process. Herein, we study the ice propagation behavior on polyelectrolyte multilayer (PEM) surfaces coated with the layer-by-layer (LBL) deposition approach. We discover that ice propagation is strongly d...

متن کامل

Application Of Polyelectrolyte Multilayers For Photolithographic Patterning Of Diverse Mammalian Cell Types In Serum Free Medium

Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer-bylayer self-assembly technique and photolithography offers a si...

متن کامل

Solvothermal Synthesis of Cobalt and Copper Sulfides Nanoparticles with High Light Absorptance for New Solar Selective Coatings

New selective coating materials are developed and used in advanced solar collector and absorber designs with improved efficiency. Cobalt and Copper sulfides nanoparticles are high interest for absorbers of solar thermal collectors due to their optical properties and high absorptance in the solar wavelength range (> 96%). In the present work, Cobalt and Copper sulfides nanoparticles were synthes...

متن کامل

Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle.

The present study demonstrates a surface structure that mimics the water harvesting wing surface of the Namib Desert beetle. Hydrophilic patterns on superhydrophobic surfaces were created with water/2-propanol solutions of a polyelectrolyte to produce surfaces with extreme hydrophobic contrast. Selective deposition of multilayer films onto the hydrophilic patterns introduces different propertie...

متن کامل

Spatial control of cellular adhesion using photo-crosslinked micropatterned polyelectrolyte multilayer films.

Cellular patterning on biomaterial surfaces is important in fundamental studies of cell-cell and cell-substrate interactions, and in biomedical applications such as tissue engineering, cell-based biosensors, and diagnostic devices. In this study, we combined the layer-by-layer polyelectrolyte multilayer deposition and photolithographic technique to create an easy and versatile technique for cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006